Trong toán học và thống kê, dòng phân định trình tự và chuỗi là mỏng và mờ, do đó nhiều người nghĩ rằng các thuật ngữ này là một và cùng một điều. Tuy nhiên, khái niệm chuỗi khác với chuỗi theo nghĩa sự nối tiếp đề cập đến một sự sắp xếp theo thứ tự cụ thể trong đó các thuật ngữ liên quan theo nhau, nghĩa là nó có một đơn vị đầu tiên, đơn vị thứ hai, đơn vị thứ ba và vv..
Khi một chuỗi tuân theo một quy tắc cụ thể, nó được gọi là tiến trình. Nó không chính xác như loạt được định nghĩa là tổng của các phần tử của một chuỗi. Hãy đọc bài viết để biết sự khác biệt đáng kể giữa chuỗi và chuỗi.
Cơ sở để so sánh | Sự nối tiếp | Loạt |
---|---|---|
Ý nghĩa | Trình tự được mô tả là tập hợp các số hoặc đối tượng theo một mẫu nhất định. | Sê-ri đề cập đến tổng các phần tử của chuỗi. |
Đặt hàng | Quan trọng | Đôi khi quan trọng |
Thí dụ | 1, 3, 5, 7, 9, 11 | 1 + 3 + 5 + 9 + 11 Sọ |
Trong toán học, một tập hợp các đối tượng hoặc số, như một1, một2, một3, một4, một5, một6Mộtnio . được cho là theo một trình tự, nếu, theo quy tắc nhất định, có một giá trị xác định. Các thành viên của chuỗi được gọi là số hạng hoặc phần tử bằng với bất kỳ giá trị nào của số tự nhiên. Mỗi thuật ngữ trong một chuỗi có liên quan đến thuật ngữ trước và thành công. Nói chung, các chuỗi có một quy tắc hoặc mẫu ẩn, giúp bạn tìm ra giá trị của thuật ngữ tiếp theo.
Thuật ngữ thứ n là hàm của số nguyên n (dương), được coi là thuật ngữ chung của chuỗi. Một chuỗi có thể là hữu hạn hoặc vô hạn.
Việc bổ sung các điều khoản của một chuỗi (an), được gọi là loạt. Giống như chuỗi, chuỗi cũng có thể là hữu hạn hoặc vô hạn, trong đó một chuỗi hữu hạn là một chuỗi có số lượng hữu hạn các thuật ngữ được viết là một1 + một2 + một3 + một4 + một5 + một6 + Mộtn. Không giống như chuỗi vô hạn, trong đó số lượng phần tử không hữu hạn hoặc không có giới hạn, được viết dưới dạng1 + một2 + một3 + một4 + một5 + một6 + Mộtn +Giáo dục .
Nếu một1 + một2 + một3 + một4 + một5 + một6 + Mộtn = Sn, rồi Sn được coi là tổng của n phần tử của chuỗi. Tổng các thuật ngữ thường được đại diện bởi sigma chữ Hy Lạp (). Vì thế,
Sự khác biệt giữa chuỗi và chuỗi có thể được rút ra rõ ràng dựa trên các lý do sau:
Tiến trình số học (A.P.) và Tiến trình hình học (G.P.) cũng là các chuỗi, không phải là chuỗi. Tiến trình số học là một chuỗi trong đó có một sự khác biệt chung giữa các thuật ngữ liên tiếp như 2, 4, 6, 8, v.v. Ngược lại, trong một tiến trình hình học, mỗi phần tử của chuỗi là bội số chung của thuật ngữ trước như 3, 9, 27, 81 và cứ thế. Tương tự, Chuỗi Fibonacci cũng là một trong chuỗi vô hạn phổ biến, trong đó mỗi thuật ngữ có được bằng cách thêm hai thuật ngữ trước 1, 1, 3, 5, 8, 13, 21, v.v..