Skewness, trong điều kiện cơ bản, ngụ ý ngoài trung tâm, trong thống kê cũng vậy, điều đó có nghĩa là thiếu tính đối xứng. Với sự giúp đỡ của độ lệch, người ta có thể xác định hình dạng của phân phối dữ liệu. Kurtosis, mặt khác, đề cập đến độ nhọn của một đỉnh trong đường cong phân phối. Sự khác biệt chính giữa độ lệch và kurtosis là các cuộc thảo luận trước đây về mức độ đối xứng, trong khi các cuộc thảo luận sau về mức độ đạt đỉnh, trong phân phối tần số.
Dữ liệu có thể được phân phối theo nhiều cách, như trải rộng hơn ở bên trái hoặc bên phải hoặc trải đều. Khi dữ liệu được phân tán đồng đều tại điểm trung tâm, nó được gọi là Phân phối chuẩn. Nó là đối xứng hoàn hảo, đường cong hình chuông, tức là cả hai bên đều bằng nhau, và do đó nó không bị lệch. Ở đây tất cả ba trung bình, trung bình và chế độ nằm ở một điểm.
Skewness và Kurtosis là hai đặc điểm quan trọng của phân phối được nghiên cứu trong thống kê mô tả. Để hiểu rõ hơn về sự hiểu biết về hai khái niệm này, chúng ta hãy xem bài viết được đưa ra dưới đây.
Cơ sở để so sánh | Skewness | Kurtosis |
---|---|---|
Ý nghĩa | Skewness ám chỉ xu hướng phân phối xác định tính đối xứng của nó về giá trị trung bình. | Kurtosis có nghĩa là thước đo độ sắc nét tương ứng của đường cong, trong phân bố tần số. |
Đo cho | Mức độ sai lệch trong phân phối. | Mức độ đuôi trong phân phối. |
Nó là gì? | Đây là một chỉ số thiếu tương đương trong phân phối tần số. | Đây là thước đo dữ liệu, là đỉnh hoặc phẳng liên quan đến phân phối bình thường. |
Đại diện | Số lượng và hướng của xiên. | Đỉnh trung tâm cao và sắc như thế nào? |
Thuật ngữ 'độ lệch' được sử dụng để chỉ sự vắng mặt của tính đối xứng từ giá trị trung bình của bộ dữ liệu. Đó là đặc điểm của độ lệch so với giá trị trung bình, lớn hơn ở một bên so với bên kia, tức là thuộc tính của phân phối có một đuôi nặng hơn bên kia. Skewness được sử dụng để chỉ ra hình dạng phân phối dữ liệu.
Trong một phân phối lệch, đường cong được mở rộng sang bên trái hoặc bên phải. Vì vậy, khi cốt truyện được mở rộng về phía bên phải nhiều hơn, nó biểu thị độ lệch dương, trong đó chế độ < median < mean. On the other hand, when the plot is stretched more towards the left direction, then it is called as negative skewness and so, mean < median < mode.
Trong thống kê, kurtosis được định nghĩa là tham số độ sắc nét tương đối của đỉnh của đường cong phân phối xác suất. Nó xác định cách các quan sát được tập hợp xung quanh trung tâm của phân phối. Nó được sử dụng để chỉ độ phẳng hoặc cực đại của đường cong phân phối tần số và đo các đuôi hoặc các ngoại lệ của phân phối.
Kurtosis tích cực thể hiện rằng phân phối đạt đỉnh hơn so với phân phối bình thường, trong khi kurtosis tiêu cực cho thấy phân phối ít đạt đỉnh hơn so với phân phối bình thường. Có ba loại phân phối:
Các điểm được trình bày cho bạn giải thích sự khác biệt cơ bản giữa độ lệch và kurtosis:
Đối với một phân phối bình thường, giá trị của thống kê độ lệch và kurtosis bằng không. Mấu chốt của phân phối là trong độ lệch, âm mưu của phân phối xác suất được kéo dài sang hai bên. Mặt khác, kurtosis xác định đường đi; các giá trị được nhóm quanh điểm trung tâm trên phân phối tần số.